App 下载
注册
登录
|
搜索
正在搜索中...
首页
我的书架
我的主页
我的收藏
我的书评
《模式识别与智能计算的MATLAB实现》既介绍了模式识别和智能计算的基础知识,又较为详细地介绍了现代模式识别和智能计算在科学研究中的应用方法和各算法的MATLAB源程序。
……
[ 展开全部 ]
《模式识别与智能计算的MATLAB实现》内容基本涵盖了目前模式识别和智能计算的重要理论和方法,包括了最近十几年来刚刚发展起来的并被实践证明有用的新技术、新理论,如支持向量机、神经网络、决策树、粗糙集理论、模糊集理论和遗传算法等。
[ 收起 ]
作者:
出版社:
定价:36.00元
ISBN:9787512408432
给个评价
做个书摘
书摘 (21 )
评价 (1 )
查看所有书摘
按目录显示书摘
有品位!
还没有认为这本书添加过书摘,赶紧来做第一个吧!
发布一条书摘有50分入账哦。
做第一条书摘
点击加载更多
导购链接
×
做书摘
文字书摘
读图识字
至少还需要输入
10
字
保存原图片为书摘
上传图片
识别
最多输入
500
个字
上传图片
重新上传
写点笔记吧
至少还需要输入
10
字
章节(选填)
第1章 绪论
1.1 模式识别的基本概念
1.1.1 模式与模式识别的概念
1.1.2 模式的特征
1.1.3 模式识别系统
1.2 模式识别的主要方法
1.3 模式识别的主要研究内容
1.4 模式识别在科学研究中的应用
1.4.1 化合物的构效分析
1.4.2 谱图解析
1.4.3 材料研究
1.4.4 催化剂研究
1.4.5 机械故障诊断与监测
1.4.6 化学物质源产地判断
1.4.7 疾病的诊断与预测
1.4.8 矿藏勘探
1.4.9 考古及食品工业中的应用
第2章 统计模式识别技术
2.1 基于概率统计的贝叶斯分类方法
2.1.1 最小错误率贝叶斯分类
2.1.2 最小风险率贝叶斯分类
2.2 线性分类器
2.2.1 线性判别函数
2.2.2 Fisher线性判别函数
2.2.3 感知器算法
2.3 非线性分类器
2.3.1 分段线性判别函数
2.3.2 近邻法
2.3.3 势函数法
2.3.4 SIMCA方法
2.4 聚类分析
2.4.1 模式相似度
2.4.2 聚类准则
2.4.3 层次聚类法
2.4.4 动态聚类法
2.4.5 决策树分类器
2.5 统计模式识别在科学研究中的应用
第3章 人工神经网络及模式识别
3.1 人工神经网络的基本概念
3.1.1 人工神经元
3.1.2 传递函数
3.1.3 人工神经网络分类和特点
3.2 BP人工神经网络
3.2.1 BP人工神经网络学习算法
3.2.2 BP人工神经网络MATLAB实现
3.3 径向基函数神经网络RBF
3.3.1 RBF的结构与学习算法
3.3.2 RBF的MATLAB实现
3.4 自组织竞争人工神经网络
3.4.1 自组织竞争人工神经网络的基本概念
3.4.2 自组织竞争神经网络的学习算法
3.4.3 自组织竞争网络的MATLAB实现
3.5 对向传播神经网络CPN
3.5.1 CPN的基本概念
3.5.2 CPN网络的学习算法
3.6 反馈型神经网络Hopfield
3.6.1 Hopfield网络的基本概念
3.6.2 Hopfield网络的学习算法
3.6.3 Hopfield网络的MATLAB实现
3.7 人工神经网络技术在科学研究中的应用
第4章 模糊系统理论及模式识别
4.1 模糊系统理论基础
4.1.1 模糊集合
4.1.2 模糊关系
4.1.3 模糊变换与模糊综合评判
4.1.4 Ifthen规则
4.1.5 模糊推理
4.2 模糊模式识别的基本方法
4.2.1 最大隶属度原则
4.2.2 择近原则
4.2.3 模糊聚类分析
……
第5章 核函数方法及应用
第6章 支持向量机及其模式识别
第7章 可拓学及其模式识别
第8章 粗糙集理论及其模式识别
第9章 遗传算法及模式识别
第10章 蚁群算法及其模式识别
第11章 粒子群算法及其模式识别
第12章 可视化模式识别技术
第13章 灰色系统方法及应用
第14章 模式识别的特征及确定
参考文献
页码(选填)
这本书已经添加了这些章节,请勾选或者新建你的书摘所属的章节
add
up
down
remove
第1章 绪论
1.1 模式识别的基本概念
1.1.1 模式与模式识别的概念
1.1.2 模式的特征
1.1.3 模式识别系统
1.2 模式识别的主要方法
1.3 模式识别的主要研究内容
1.4 模式识别在科学研究中的应用
1.4.1 化合物的构效分析
1.4.2 谱图解析
1.4.3 材料研究
1.4.4 催化剂研究
1.4.5 机械故障诊断与监测
1.4.6 化学物质源产地判断
1.4.7 疾病的诊断与预测
1.4.8 矿藏勘探
1.4.9 考古及食品工业中的应用
第2章 统计模式识别技术
2.1 基于概率统计的贝叶斯分类方法
2.1.1 最小错误率贝叶斯分类
2.1.2 最小风险率贝叶斯分类
2.2 线性分类器
2.2.1 线性判别函数
2.2.2 Fisher线性判别函数
2.2.3 感知器算法
2.3 非线性分类器
2.3.1 分段线性判别函数
2.3.2 近邻法
2.3.3 势函数法
2.3.4 SIMCA方法
2.4 聚类分析
2.4.1 模式相似度
2.4.2 聚类准则
2.4.3 层次聚类法
2.4.4 动态聚类法
2.4.5 决策树分类器
2.5 统计模式识别在科学研究中的应用
第3章 人工神经网络及模式识别
3.1 人工神经网络的基本概念
3.1.1 人工神经元
3.1.2 传递函数
3.1.3 人工神经网络分类和特点
3.2 BP人工神经网络
3.2.1 BP人工神经网络学习算法
3.2.2 BP人工神经网络MATLAB实现
3.3 径向基函数神经网络RBF
3.3.1 RBF的结构与学习算法
3.3.2 RBF的MATLAB实现
3.4 自组织竞争人工神经网络
3.4.1 自组织竞争人工神经网络的基本概念
3.4.2 自组织竞争神经网络的学习算法
3.4.3 自组织竞争网络的MATLAB实现
3.5 对向传播神经网络CPN
3.5.1 CPN的基本概念
3.5.2 CPN网络的学习算法
3.6 反馈型神经网络Hopfield
3.6.1 Hopfield网络的基本概念
3.6.2 Hopfield网络的学习算法
3.6.3 Hopfield网络的MATLAB实现
3.7 人工神经网络技术在科学研究中的应用
第4章 模糊系统理论及模式识别
4.1 模糊系统理论基础
4.1.1 模糊集合
4.1.2 模糊关系
4.1.3 模糊变换与模糊综合评判
4.1.4 Ifthen规则
4.1.5 模糊推理
4.2 模糊模式识别的基本方法
4.2.1 最大隶属度原则
4.2.2 择近原则
4.2.3 模糊聚类分析
……
第5章 核函数方法及应用
第6章 支持向量机及其模式识别
第7章 可拓学及其模式识别
第8章 粗糙集理论及其模式识别
第9章 遗传算法及模式识别
第10章 蚁群算法及其模式识别
第11章 粒子群算法及其模式识别
第12章 可视化模式识别技术
第13章 灰色系统方法及应用
第14章 模式识别的特征及确定
参考文献
×
添加一个书摘本
搜索创建书摘本
搜索
正在搜索...
不对,换一下
书名
作者
出版社
备注
ISBN
*
*
×
编辑书摘
书摘
最少还需要输入
10
字
写点笔记吧
最少还需要输入
10
字
*
这条书摘是属于哪一章节的?
第1章 绪论
1.1 模式识别的基本概念
1.1.1 模式与模式识别的概念
1.1.2 模式的特征
1.1.3 模式识别系统
1.2 模式识别的主要方法
1.3 模式识别的主要研究内容
1.4 模式识别在科学研究中的应用
1.4.1 化合物的构效分析
1.4.2 谱图解析
1.4.3 材料研究
1.4.4 催化剂研究
1.4.5 机械故障诊断与监测
1.4.6 化学物质源产地判断
1.4.7 疾病的诊断与预测
1.4.8 矿藏勘探
1.4.9 考古及食品工业中的应用
第2章 统计模式识别技术
2.1 基于概率统计的贝叶斯分类方法
2.1.1 最小错误率贝叶斯分类
2.1.2 最小风险率贝叶斯分类
2.2 线性分类器
2.2.1 线性判别函数
2.2.2 Fisher线性判别函数
2.2.3 感知器算法
2.3 非线性分类器
2.3.1 分段线性判别函数
2.3.2 近邻法
2.3.3 势函数法
2.3.4 SIMCA方法
2.4 聚类分析
2.4.1 模式相似度
2.4.2 聚类准则
2.4.3 层次聚类法
2.4.4 动态聚类法
2.4.5 决策树分类器
2.5 统计模式识别在科学研究中的应用
第3章 人工神经网络及模式识别
3.1 人工神经网络的基本概念
3.1.1 人工神经元
3.1.2 传递函数
3.1.3 人工神经网络分类和特点
3.2 BP人工神经网络
3.2.1 BP人工神经网络学习算法
3.2.2 BP人工神经网络MATLAB实现
3.3 径向基函数神经网络RBF
3.3.1 RBF的结构与学习算法
3.3.2 RBF的MATLAB实现
3.4 自组织竞争人工神经网络
3.4.1 自组织竞争人工神经网络的基本概念
3.4.2 自组织竞争神经网络的学习算法
3.4.3 自组织竞争网络的MATLAB实现
3.5 对向传播神经网络CPN
3.5.1 CPN的基本概念
3.5.2 CPN网络的学习算法
3.6 反馈型神经网络Hopfield
3.6.1 Hopfield网络的基本概念
3.6.2 Hopfield网络的学习算法
3.6.3 Hopfield网络的MATLAB实现
3.7 人工神经网络技术在科学研究中的应用
第4章 模糊系统理论及模式识别
4.1 模糊系统理论基础
4.1.1 模糊集合
4.1.2 模糊关系
4.1.3 模糊变换与模糊综合评判
4.1.4 Ifthen规则
4.1.5 模糊推理
4.2 模糊模式识别的基本方法
4.2.1 最大隶属度原则
4.2.2 择近原则
4.2.3 模糊聚类分析
……
第5章 核函数方法及应用
第6章 支持向量机及其模式识别
第7章 可拓学及其模式识别
第8章 粗糙集理论及其模式识别
第9章 遗传算法及模式识别
第10章 蚁群算法及其模式识别
第11章 粒子群算法及其模式识别
第12章 可视化模式识别技术
第13章 灰色系统方法及应用
第14章 模式识别的特征及确定
参考文献
*
页码
×
删除
您确定要删除吗?
有品位!
还没有认为这本书添加过书摘,赶紧来做第一个吧!
发布一条书摘有50分入账哦。