交易风险管理

《交易风险管理:通过控制风险提高获利能力的技巧》是老生常谈了——不过很少会有人去质疑——证券交易员如果过度冒险是自寻死路。但正如肯尼思·L.格兰特在《交易风险管理》中所说 …… [ 展开全部 ]
  • 作者:肯尼思·格兰特
  • 出版社:万卷出版公司
  • 定价:45.00元
  • ISBN:754700718
第五章 确定适当的风险水平(法则一)
  • 银翼OTq
    2017-03-28 14:34:04 摘录
    盈亏中值(中位数)
      统计上的中位数是指在一组数据中有一半的数据比它大,有
      半的数据比它小的观测数据。在完全对称分布中,均值和中位数是相同的(或几乎相同)。然而,根据我的经验,与绩效相关的数据集很少是完全对称的。因此,我建议您比较不同时间范围内您的投资组合的均值和盈亏中位数。如果均值大大超过中位数,则很可能是由于少数赚钱最多的交易日大大提高了您的平均水平。同样,如果中位数明显高于平均值,那很可能是由于这组数据中有一些极端负值。
      无论是哪种情况,如果中位数与均值相差很大,这就意味着您又有机会进一步探究组合的动态模式以及在盈亏分布尾部有关活动的影响了。我强烈建议您借此机会进一步探讨相关的原因。
    这条书摘已被收藏0
  • 银翼OTq
    2017-03-28 14:33:50 摘录
    夏普比率的计算有许多种形式,但它们都力图抓住以下概念:
      夏普比率=(回报率一无风险回报率)/收益率标准差(或(回报一无风险回报)/收益标准差)
      请注意,等式右边可以以金额或百分比表示,只要两边一致即可。作为一个经验法则,我认为个人应努力让用我们刚刚介绍的方法计算出的夏普比率等于或超过1.0。例如,假设无风险报率为5%,年回报标准差为15%,上述投资组合的回报率至少要为20%才能达到这个临界值—(20%的回报率-5%的无风险回报率)/15%的标准差=1.0。
    这条书摘已被收藏0